skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Phillips, Payton"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The frequency of infectious disease outbreaks and pandemics is rising, demanding an understanding of their drivers. Common wisdom suggests that increases in outbreak frequency are driven by socioeconomic factors such as globalization and urbanization, yet, the majority of disease outbreaks are caused by zoonotic pathogens that can be transmitted from animals to humans, suggesting the important role of ecological and environmental drivers. Previous studies of outbreak drivers have also failed to quantify the differences between major classes of pathogens, such as bacterial and viral pathogens. Here, we reconsider the observed drivers of a global sample of 300 zoonotic outbreaks, including the 100 largest outbreaks that occurred between 1977 and 2017. We show that socioeconomic factors more often trigger outbreaks of bacterial pathogens, whereas ecological and environmental factors trigger viral outbreaks. However, socioeconomic factors also act as amplifiers of viral outbreaks, with higher case numbers in viral outbreaks driven by a larger proportion of socioeconomic factors. Our results demonstrate that it is useful to consider the drivers of global disease patterns in aggregate due to commonalities that cross disease systems. However, our work also identifies important differences between the driver profiles of bacterial and viral diseases in aggregate. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026